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Abstract

The nonlocality of quantum states on a bipartite system A + B is tested
by comparing probabilistic outcomes of two local observables of different
subsystems. For a fixed observable A of the subsystem A, its optimal
approximate double A′ of the other system B is defined such that the
probabilistic outcomes of A′ are almost similar to those of the fixed observable
A. The case of σ -finite standard von Neumann algebras is considered and the
optimal approximate double A′ of an observable A is explicitly determined.
The connection between optimal approximate doubles and quantum
correlations is explained. Inspired by quantum states with perfect correlation,
like Einstein–Podolsky–Rosen states and Bohm states, the nonlocality power of
an observable A for general quantum states is defined as the similarity that the
outcomes of A look like the properties of the subsystem B corresponding to A′.
As an application of optimal approximate doubles, maximal Bell correlation
of a pure entangled state on B(C2) ⊗ B(C2) is found explicitly.

PACS number: 03.65.Ud

1. Introduction

An essential feature of quantum systems is the phenomenon of nonlocality. The first example
was provided by the famous Einstein–Podolsky–Rosen (EPR) state [1]. On the EPR state
the outcomes of measurements on different local systems are such perfectly correlated that
if the outcome of one measurement on a local system is known, then the outcome of some
measurement on the other local system can be predicted with certainty. Therefore, the EPR
state is said to have perfect correlation. On the other hand, the EPR state [1] suffers a
mathematical difficulty that it cannot be represented as a unit vector on the Hilbert space
L2(R2).

The first well-defined state having perfect correlation is finite-dimensional and was found
by Bohm [2]. Recently the EPR state was formulated as a positive linear functional with
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norm one on the CCR-algebra A(R2) ⊗ A(R2) [3] or on the set of bounded linear operators
B(L2(R2)) [4]. One interesting task is then to find out all the states with perfect correlation. The
case of finite-dimensional systems was rigorously discussed in [5] and all states with perfect
condition on finite-dimensional systems are found and shown to be unitarily equivalent. In [6]
the condition of perfect correlation was formulated as a simple equation for general systems.
With this equation one may find out all states with perfect correlation on the two-particle system
A(Rn) ⊗ A(Rn) [7] which shows a different entanglement property from finite-dimensional
systems—there are infinitely many unitarily non-equivalent states with perfect correlation on
A(Rn) ⊗ A(Rn).

The condition of perfect correlation is given as follows [6]. LetA andB be two commuting
von Neumann algebras on a Hilbert space H and R the von Neumann algebra generated by A
and B. Let ω be a state on R and A a self-adjoint operator in A. A self-adjoint operator A′ in
B is called an EPR double of A with respect to ω if

ω((A − A′)2) = 0. (1)

The pair (A,A′) may be called an EPR pair with respect to ω and equation (1) is called the
perfect correlation condition. Moreover, ω is called an EPR state if every self-adjoint operator
A has an EPR double A′ with respect to ω, and vice versa.

Consider that ω is a vector state on R of the following form:

ω(X) = 〈�,X�〉 (2)

with X ∈ R where � is a unit vector in H. The perfect correlation condition (1) becomes

‖A� − A′�‖2 = 0 (3)

with A = A∗ ∈ A and A′ = A′∗ ∈ B. Equation (3) means that the EPR double A′ of A can
be found just by comparing all vectors B ′�,B ′ ∈ B to the vector A� and A′� is the closest
vector to A� such that A′� = A�. Consequently, the main idea of equation (3) is to obtain the
optimal approximation of A� from the set {B ′� ; B ′ ∈ B}. These optimal approximations
of all observables A ∈ A reveal one important entanglement property of quantum states—
the perfect correlation. Following this line, one is interested in optimal approximations of
observables for general quantum states.

The concept of EPR doubles may be generalized as follows. For a self-adjoint operator
A in A we define the quantity qω(A) of A:

qω(A) = inf{ω((A − B ′)2) : B ′ = B ′∗ ∈ B}. (4)

The quantity qω(A) is a measure of the defect of perfect correlation with respect to A and ω.
A self-adjoint operator A′ in B is called an optimal approximate double of A with respect to
ω if ω((A − A′)2) = qω(A). Similarly, we can define qω(B ′) for a self-adjoint operator B ′ in
B and the optimal approximate double of B ′.

Consider again that ω is a vector state (2). Then qω(A) is determined uniquely by a vector
in the closed set {B ′� ; B ′ = B ′∗ ∈ B}. Furthermore, assume that � is separating for B, i.e.
B ′� = 0 with B ′ ∈ B implies B ′ = 0. Then, if the closest vector is of the form A′�,A′ is
unique. Generally it is difficult to find out optimal approximate doubles A′ of an observable
A for a state ω.

The purpose here is to consider a special class of quantum states that � is a cyclic and
separating vector for a σ -finite von Neumann algebra M on a Hilbert space H. The observable
algebras of two subsystems are given by A = M and B = M′ where M′ is the commutant
of M. The state ω on R is the vector state (2) associated with �. In this case � is also cyclic
and separating for M′ and � has the property

M� = H = M′�. (5)
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Thus, ω is a entangled state. Such states are very interesting in physics. For finite-dimensional
systems C

n ⊗ C
n with observable algebras M = B(Cn) ⊗ I and M′ = I ⊗ B(Cn) we know

that pure states φ with Schmidt number n,

φ =
n∑

j=1

λj |jj 〉, λj > 0,

n∑
j=1

λ2
j = 1, (6)

where {|j 〉}nj=1 is an orthonormal basis for C
n, satisfy (5). Other examples are temperature

states in quantum statistical mechanics [8]. Furthermore, in local quantum field theory [9] the
vacuum state � has a much stronger property—the Reeh–Schlieder property. It means that
� is a cyclic vector for the field algebra A(O) of any open set O in the Minkowski space,
A(O)� = H.

The quantity qω(A) has a simple geometrical meaning. It is known that AA′ is still
a self-adjoint operator on H for a self-adjoint operator A ∈ M and a self-adjoint operator
A′ ∈ M′. Hence, we have

〈A�,A′�〉 = 〈�,AA′�〉 ∈ R (7)

for A = A∗ ∈ M, A′ = A′∗ ∈ M′. Introduce the notation Hr to view H as a real Hilbert
space by equipping it with the real part of its inner product

〈ξ, η〉r = Re〈ξ, η〉
for ξ, η ∈ H. Let Ms and M′

s denote the subsets of self-adjoint operators of M and M′.
Then Ms� and M′

s� are two real subspaces of Hr . Thus, qω(A) is equal to the distance of the
vector A� to the closed real subspace M′

s�. Hence, searching optimal approximate double
A′ ∈ Ms of a given element A ∈ Ms is equal to finding the projection A′� of a vector A�

on the closed real subspace M′
s� in Hr . This is the basic idea of our estimation in section 3.

2. Geometrical aspects of standard von Neumann algebras

In this section we first review basic algebraic structures of von Neumann algebras M with
a cyclic and separating vector � on a complex Hilbert space H [10]. Denote Hr as the real
version of the Hilbert space H as introduced at the end of section 1. Then we construct of a
real Hilbert space X with Hr = X ⊗ X and a positive operator A on X such that x ∈ Ms�

and y ∈ M′
s� can be represented isometrically as (ξ, Aξ) and (ξ̃ ,−Aξ̃) with ξ, ξ̃ ∈ X . This

explains the geometrical positions of Ms� and M′
s� on Hr [11].

Since � is cyclic and separating for M,� has the property of equation (5). Define the
operator S0 on H as follows:

S0 : A� 	→ A∗�, A ∈ M. (8)

Due to equation (5) S0 is closable. Its closure S has the polar decomposition

S = J	1/2, (9)

with a positive operator 	 and an anti-unitary operator J. 	 and J are called the modular
operator and the modular conjugation associated with the pair (M,�), respectively. The
Tomita–Takesaki modular theorem [10] says that

J� = � = 	� (10)

and

JMJ = M′, 	itM	−it = M, t ∈ R, (11)

3
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where the one-parameter group of automorphisms of M,

σt (A) = 	itA	−it , (12)

is called the modular group associated with (M,�). The vector state � on M satisfies
the so-called KMS condition that for every pair of elements A,B of M there is a bounded
continuous function FA,B(z) in the strip 0 � Im(z) � 1 and holomorphic in the interior such
that

FA,B(t) = 〈�,Aσt(B)�〉, FA,B(t + i) = 〈�, σt (B)A�〉. (13)

This condition defines temperature states in quantum statistical mechanics [8]. The closure of
the set

{Aj(A)� : A ∈ M}
with j (A) = JAJ is called the natural positive cone P associated with (M,�). Any vector
ξ with Jξ = ξ has a unique decomposition ξ = ξ1 − ξ2, where ξ1, ξ2 ∈ P and ξ1 ⊥ ξ2.
(M,H, J,P) is called a standard von Neumann algebra.

From equation (11) we see that Ms and M′
s are related by the antilinear ∗-isomorphism

j : M → M′ defined by j (A) = JAJ . On the other hand, the geometrical positions of
Ms� and M′

s� on Hr are given in [11]: (1) Hr can be written as the direct of certain real
Hilbert spaces, Hr = X ⊕ X and Ms� and M′

s� can be represented isomorphically as the
graphs of A and −A where A is a positive operator on X ; (2) graph(A) and graph(−A) can be
rotated isometrically. The constructions of the operator A and the associated Hilbert space X
are basic steps to further analysis in [11]. Pictorially graph(A) and graph(−A) (i.e. Ms� and
M′

s�) can be viewed as two straight lines Lm and L−m through the origin with opposite slopes
m and −m in an XY -plane. It is known that Lm and L−m can be rotated counterclockwise
such that L−m is mapped to the x-axis. Then the projection of a point P of Lm on L−m is just
the x-component of the new coordinates of P after the rotation. With this picture estimation
of the projection of a vector in Ms� on M′

s� in the next section can be performed with the
two steps. First, the projection of a vector of Ms� on M′

s� is equal to the projection of
the corresponding vector of graph(A) on graph(−A). Second, the projection of a vector of
graph(A) on graph(−A) can be derived with the help of the isomorphism corresponding to
the rotation mapping L−m to the x-axis.

Let K = Ms� and K̃ = M′
s� denote the closure of Ms� and M′

s�, respectively.
Clearly, K and K̃ are two closed real subspaces of Hr . Let

∐
denote the orthogonality with

respect to the real inner product 〈ξ, η〉r . It was shown [11] that iK̃ is the real orthogonal
complement of K: K

∐ = iK̃ on Hr . Consequently it holds that

Hr = K ⊕ iK̃. (14)

Moreover, due to (8)and (9) we have

	1/2|K = J |K, 	−1/2|K̃ = J |K̃. (15)

Thus, 	1/2 and 	−1/2 are bounded and invertible on K and K̃.
Let H
 denote the (closed) real eigenspace of J corresponding to the eigenvalue 1,

H
 = P − P = {ξ ∈ H : Jξ = ξ}. (16)

Since the restriction of the inner product on H to H
 is real, we use the notation H

r to remind

us that H
 is a real Hilbert space. Because of H

r

∐
iH


r and H = H
 + iH
, it holds that

Hr = H

r ⊕ iH


r . (17)

From equation (11) it follows that JK = K̃ and J K̃ = K. As a consequence, H

r can

be obtained from K or K̃. Let q = 1
2 (I + J ) be the real projection onto H


r . Because of
equation (15) q has different representations on K and K̃. Define

4
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Q = 1
2 (I + J )|K = 1

2 (I + 	1/2)|K, (18)

Q̃ = 1
2 (I + J )|K̃ = 1

2 (I + 	−1/2)|K̃. (19)

It was shown [11] that Q and Q̃ have the same range, i.e.

Q(K) = Q̃(K̃) = H

r (20)

and both Q and Q̃ are invertible. Therefore, elements of both K and K̃ can be represented in
terms of the elements of H


r [11].

Lemma 1. Let (I − 	1/2)/(I + 	1/2) has the following polar decomposition:

I − 	1/2

I + 	1/2
= UA (21)

with a positive operator A and an unitary operator U:

A = |I − 	1/2|
I + 	1/2

, U = p1 − p2 (22)

where p1 is the spectral projection of 	 corresponding to the open interval (0, 1) and p2 is the
spectral projection of 	 corresponding to the open interval (1,∞). Then it holds that

K = {
ξ + UAξ : ξ ∈ H


r

}
, K̃ = {

ξ − UAξ : ξ ∈ H

r

}
. (23)

Clearly, the positive operator A is bounded, 0 � A � I . In terms of A and U the inverse
of Q and Q̃ can be represented by

Q−1 = (I + UA)|H

r and Q̃−1 = (I − UA)|H


r . (24)

Thus it holds that

Q̃−1Q = 	1/2|K = J |K, (25)

Q−1Q̃ = 	−1/2|K̃ = J |K̃. (26)

Due to J	J = 	−1 we have JA = AJ . Therefore, A maps H

r into H


r .
Define the graph of a bounded operator X on a Hilbert space X to be the subset graph(X)

of X ⊕ X with

graph(X) = {(ξ, Aξ) : ξ ∈ X }.
Moreover, let (L1, N1) be a pair of (closed) real subspaces of the real Hilbert space H1,
and (L2, N2) be a correspondence pair of the real Hilbert space H2. (L1, N1) is said to be
(isometrically) equivalent to (L2, N2), denoted by (L1, N1) ∼= (L2, N2), if there exists an
isometry V : H1 → H2 such that V (L1) = L1 and V (N1) = N2.

Let X = A be the operator given by equation (22) and X = H

r . Then we may identify

graph(A) and graph(−A) with K and K̃, respectively [11].

Theorem 2. There exists an operator A : H

r → H


r , 0 � A � I such that
(graph(A), graph(−A)) ∼= (K, K̃), i.e. there exists an isometry V from the real Hilbert space
H


r ⊕ H

r onto Hr such that

V (graph(A)) = K and V (graph(−A)) = K̃. (27)

The operator A is unique up to isometric equivalence, i.e. if B is another operator with
the same properties as A, then there is an isometry W : H


r → H

r such that B = WAW ∗.

5
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Specially, A can be chosen as

A = |I − 	1/2|
I + 	1/2

∣∣∣∣H

r . (28)

In the following, the isometry V for the special choice (28) of A is explained. Let C denote
the set of fixed points of the modular group σt :

C = {A ∈ M|σt (A) = A}. (29)

By the KMS-boundary condition (13) it was shown [11] that

C = {A ∈ M|ω(AB) = ω(BA), ∀B ∈ M}.
Moreover, it holds [11] that

Cs� = K ∩ K̃ = K ∩ H

r = K̃ ∩ H


r (30)

where Cs is the set of self-adjoint operators in C. Denote by p0 the projection onto the subspace
C� of invariant vectors. The mapping V for the special choice (28) of A is given by

V : H

r ⊕ H


r → Hr , V (ξ ⊕ η) = ξ + U ′η (31)

with U ′ = ip0 + U = ip0 + p1 − p2, where p1 and p2 are the projections defined in lemma 1.
Since Jp0 = p0J and p2 = Jp1J , we have JU ′ = −U ′J and hence U ′ maps H


r onto iH

r .

Together with (17) V is an isometry from H

r ⊕ H


r onto Hr

(=H

r ⊕ iH


r

)
. In particular, for

vectors in graph(A) and graph(−A) it holds

V (ξ,Aξ) = ξ + U ′Aξ = ξ + UAξ = Q−1ξ ∈ K, (32)

V (ξ,−Aξ) = ξ − U ′Aξ = ξ − UAξ = Q̃−1ξ ∈ K̃. (33)

because of lemma 1 and equation (24).
There is a simple picture to demonstrate the relation of graph(A) and graph(−A). Suppose

both the x-axis and y-axis of an XY -plane represent the real Hilbert space H

r . Then the XY -

plane represents the Hilbert space H

r ⊕ H


r (and hence Hr ). The origin represents the set
Cs� due to equation (30). Furthermore, the graphs of operator A and −A, graph(A) and
graph(−A), are represented as two straight lines Lm and L−m through the origin with slope
m and −m,m > 0, respectively. It reflects the symmetric positions of K and K̃ with respect
to H


r .
This simple picture can also demonstrate that graph(A) and graph(−A) can be

isometrically rotated. In the XY -plane the two lines Lm and L−m can be rotated
counterclockwise with the angle θ, θ = arctan m, so that the line L−m representing graph(−A)

is mapped to the x-axis while the line Lm representing graph(A) to the line Lm′ with slope
m′ = tan 2θ . Correspondingly, graph(A) and graph(−A) are isometrically equivalent to
graph(T ) and H


r ⊕ {0} for some positive operator T,

(graph(A), graph(−A)) ∼= (graph(T ),H
 ⊕ {0}). (34)

This isometric equivalence is implemented by the isometry V ′ : H

r ⊕ H


r → H

r ⊕ H


r :

V ′((ξ, η)) =
(

I

(I + A2)1/2
ξ − A

(I + A2)1/2
η,

A

(I + A2)1/2
ξ +

I

(I + A2)1/2
η

)
(35)

and it holds that

V ′(graph(A)) = graph(T ), V ′(graph(−A)) = H

r ⊕ {0} (36)

with T = 2A/(I −A2). Consequently, the projection of a vector in graph(A) onto graph(−A)

can be found by using V ′ and T.

6
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3. Optimal approximate doubles

Theorem 3. Let x ∈ K. Then there exists a unique element x̃ ∈ K̃ such that
‖x − x̃‖ = minỹ∈K̃ ‖x − ỹ‖ with x̃ given by

x̃ = PJx with P = 2

	−1/2 + 	1/2
(37)

where 	 and J are the modular operator and the modular conjugation, respectively. We may
also call x̃ as the optimal approximate double of x.

Proof. As mentioned before, we work with the real Hilbert space Hr and K = Ms� and
K̃ = M′

s� are two closed real subspaces of the real Hilbert space Hr . It holds that

‖x − ỹ‖ = ‖x − ỹ‖r , (38)

where ‖ · ‖r is the norm induced by the inner product of Hr .
Our estimation consists of two steps: (i) x and ỹ are represented as the elements

of graph(A) and graph(−A), respectively; (ii) graph(A) and graph(−A) are isometrically
transformed onto graph(T ) and H


r ⊕ {0}, respectively. So the estimation can be performed
with ease.

(i) By theorem 2, x and ỹ can be represented by vectors in graph(A) and graph(−A). In
particular, there exist unique ξ ∈ H


r and ξ̃ ∈ H

r such that

‖x − ỹ‖r = ‖(ξ, Aξ) − (ξ̃ , (−A)ξ̃)‖r with ξ = Qx, ξ̃ = Q̃ỹ (39)

by equations (32) and (33).
(ii) Because of the isometric equivalence (graphA, graph(−A)) ∼= (graphT ,H
 ⊕ {0}) with

T = 2A/(I − A2) equation (39) becomes

‖(ξ, Aξ) − (ξ̃ , (−A)ξ̃)‖r = ‖(ξ1, T ξ1) − (ξ2, 0)‖r (40)

where ξ1, ξ2 ∈ H

r are given uniquely by

ξ1 = 1 − A2

(1 + A2)1/2
ξ and ξ2 = (1 + A2)1/2ξ̃ . (41)

due to equations (34)–(36). Thus, the minimum of ‖x − ỹ‖ is achieved iff ξ2 = ξ1, i.e. iff

ξ̃ = Pξ, with P = 1 − A2

1 + A2
. (42)

Because of JA = AJ we also have JP = PJ . Thus, P maps H

r into H


r . Moreover, P
can be represented in terms of the modular operator 	:

P = 2

	−1/2 + 	1/2
. (43)

For A′ ∈ M ′
s we have

PA′� =
∫

R

2 dt

eπt + e−πt
σt (A

′)�. (44)

Due to the modular theorem (11) we have σt (A
′
2)� ∈ K̃ and hence PA′

2� ∈ K̃. Thus,
P K̃ ⊂ K̃. On the other hand, due to equation (24) it holds Q̃−1Pξ = PQ̃−1ξ ∈ K̃ for all
ξ ∈ H


r . Consequently, the minimum is achieved if and only if

ỹ = Q̃−1ξ̃ = Q̃−1PQx = PQ̃−1Qx = PJx. (45)

The last equality follows from equation (25). �

7
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Corollary 4. Let A = A∗ ∈ M. Then the optimal approximate double A′ = A′∗ ∈ M′ of A

can be uniquely given by A′ = P(A) with

P(A) = 2Iλ(JAJ ) with λ = 1 (46)

where Iλ is given in [10],

Iλ(x) = λ−1/2
∫ ∞

−∞
dt

λit

eπt + e−πt
σt (x). (47)

The function P(·) mapping A to its optimal approximate double P(A) is a one-to-one mapping
with norm equal to one.

Proof. From equation (11) the operator A′ given by equation (46) is in M′. Furthermore, it
holds that

A′� = 2
∫ ∞

−∞

1

eπt + e−πt
	it (JAJ )	−it�

= 2
∫ ∞

−∞

1

eπt + e−πt
	itJA�

= 2

	1/2 + 	−1/2
JA�.

Since � is separating for M′, A′ is determined uniquely and hence P(·) is one-to-one. �

The case 	 = I corresponds to EPR states on which we have P = I and all observables
A ∈ Ms are perfectly correlated with their optimal approximate doubles A′ ∈ M′

s given
by A′ = JAJ . The following corollary says which observables are perfectly correlated for
general states.

Corollary 5. The following are equivalent.

(1) x = x̃

(2) ‖x̃‖ = ‖x‖
(3) x ∈ Cs�

Proof. The implication of 2 from 1 is trivial. If ‖x̃‖ = ‖x‖, J x is an eigenvector of 	 with
eigenvalue 1. Therefore, 	−1/2Jx = Jx. Due to J |K = 	1/2|K we have x = 	1/2x and thus
x ∈ Cs�.

On the other hand, if x ∈ Cs�, we have 	x = x and Px = x. Moreover,
Jx = 	1/2x = x. Thus x̃ = PJx = Px = x. �

Hence, observables A are perfectly correlated with their optimal approximate doubles A′

iff observables A are in Cs . In this case, we have A′ = JAJ .

4. Nonlocality power

The optimal approximate double x̃ = PJx of a vector x ∈ K consists of two operators J and
P. The operator J comes from the mapping κ(A) = JA∗J which maps M to M′ bijectively
due to (11). For the case that 	 = I (i.e. P = I ) it follows from equations (10) and (11) that
A� = κ(A)� and A∗� = (κ(A))∗� for any A ∈ M. Hence,

A� = κ(A)�, with A ∈ Ms , κ(A) ∈ M′
s . (48)

It means that the probabilistic outcomes of an observable A of one subsystem M are the
same as those of the observable κ(A) of the other subsystem M′—which is just the perfect

8
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correlation considered by EPR. Consequently x̃ = x and J = I on K. Furthermore,
equation (48) implies that observables of both subsystems give the same probabilistic
outcomes. Thus, we have Ms� = M′

s� and K = K̃.
For the case that 	 �= I (i.e. P �= I ) it follows from corollary 5 that ‖x̃‖ < ‖x‖ for some

x ∈ K. It follows that K �= K̃. Thus, there is some observable A ∈ Ms which is not perfectly
correlated with any observable A′ ∈ M′

s . But there is still a symmetry between K and K̃
given by the anti-unitary mapping A� → κ(A)�,A ∈ Ms , i.e. x → Jx, x ∈ K. Clearly, the
operator P causes the contraction of the norm from ‖x‖ to ‖x̃‖. Hence, for the vector state
� without perfect correlation P describes how an observable of one subsystem is correlated
with observables of the other subsystem.

Recall that in probability theory and statistics the correlation coefficient cor(X, Y ) between
two random variables X and Y with expectation values μX and μY and standard deviations σX

and σY is defined as

cor(X, Y ) = E((X − μX)(Y − μY ))

σXσY

, (49)

where E is the expectation value operator. It measures the strength and direction of a linear
relationship between the X and Y variables. The correlation coefficient cor(X, Y ) always takes
a value between −1 and 1, with 1 (or −1) indicating a perfect positive (or negative) linear
relationship. If there is no linear correlation or a weak linear correlation between X and Y,
then cor(X, Y ) is close to 0.

For an observable X in a vector state � of a quantum system the expectation value operator
is given by E(X) = 〈�,X�〉. Consider two local observables A ∈ Ms and B ′ ∈ M′

s . If
E(A) = 0 = E(B ′) (i.e. μA = 0 = μB ′ ), then we have

cor(A,B ′) = 〈�,AB ′�〉
‖A�‖ · ‖B ′�‖ = 〈A�,B ′�〉

‖A�‖ · ‖B ′�‖ = cos θ (50)

where θ is the angle between the vectors A� and B ′�. Hence, the cosine of the angle between
the vectors A� and B ′� is a measure of the correlation of the outcomes of A and B ′. Generally
we may say that A� and B ′� encode probabilistic outcomes of A and B ′ and the cosine of
the angle between A� and B ′� is a measure of the correlation of probabilistic outcomes of A

and B ′.
Since the sign of cosine is irrelevant to nonlocality, we are interested in the following

quantity:

cos2 θ = |〈A�,B ′�〉|2
‖A�‖2 · ‖B ′�‖2

. (51)

Due to theorem 3 we have

|〈A�,B ′�〉|2 = |Re 〈PJA�,B ′�〉|2 (52)

and the quantity (51) has the maximal value p(A) with

p(A) = ‖PJA�‖2

‖A�‖2
(53)

if and only if B ′� is parallel to PJA�. Thus, the quantity (51) is maximal iff B ′ is proportional
to the optimal approximate double A′ of A, i.e. B ′ = αA′, α ∈ R, with A′ = P(A) defined as
(46). Since PJ = JP and J is an anti-unitary operator, it holds that

p(A) = ‖PA�‖2

‖A�‖2
. (54)

9
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The value of p(A) is between 0 and 1. Due to corollary 5 an observable A ∈ M with
p(A) = 1 is perfectly correlated with its optimal double A′ = P(A) = JAJ ∈ M′, while an
observable A ∈ M with p(A) < 1 cannot be perfectly correlated to any observable B ′ ∈ M′.
More precisely, the probabilistic outcomes of a local observable A of the subsystem M are
correlated with the probabilistic outcomes of observables B ′ of the other subsystem M′ with
a correlation coefficient in the range −√

p(A) � cor(A,B ′) �
√

p(A).
Furthermore, by (51) and (52) the operator P characterizes the similarity between A�

and B ′� and p(A) gives the highest degree of similarity between A� and B ′� when they
are normalized. In particular, A�/‖A�‖ is similar to A′�/‖A′�‖ by p(A). Moreover, the
projection of A� on the unit vector A′�/‖A′�‖ is A′�. Thus, we may say that A� looks
like A′� with similarity p(A).

It is well known that the probabilistic outcomes of an observable A of the local subsystem
M are said to be properties of M. Thus, we may say that A� encodes properties of the local
subsystem M obtained by applying the observable A ∈ M. For a bipartite system M + M′

in a entangled state �, it is interesting to see that the properties of the subsystem M′ can
be obtained without applying observables B ′ of M′ directly. Consider the situation that two
subsystems M and M′ are separated by some distance and they share a cyclic and separating
state � in common. We want to know the properties of M′, but for some reason we cannot
apply observables B ′ of M′. If � is perfectly correlated, then by applying an observable A of
M the probabilistic outcomes of A can be interpreted as the properties of M′ corresponding
to its optimal doubles A′ due to A′� = A�. This is just what EPR states and Bohm states
tell us. On the other hand, if � is not perfectly correlated, then by applying observables of M
we can still get the properties of M′ by chance. It is because the projection of A� on K̃ is
A′� and the similarity between A� and A′� is p(A). We may say that A� is interpreted as
A′� with probability p(A). It means that we can obtain the properties of the subsystem M′

corresponding to A′ with probability p(A). In this aspect nonlocality of � is demonstrated
by the acquirement of properties of M′ by observables of M and we may call p(A) the
nonlocality power of the local operators A with respect to �.

Consider an example of type I factors. Let M and M′ denote the operator algebras M =
B(Cn)⊗ I and M′ = I ⊗B(Cn) and ω be a vector state � of the form � = ∑n

1 ρ
1/2
j |ejfj 〉

with ρj > 0 and
∑n

1 ρj = 1 where {ej } and {fj } are two orthonormal bases of C
n. The

modular operator and the modular conjugation are given by

J
(∑

λjk|ejfk〉
)

=
∑

λjk|ekfj 〉, (55)

	 =
∑ ρj

ρk

|ej 〉〈ej | ⊗ |fk〉〈fk|. (56)

Due to corollary 5, self-adjoint operators in Cs have the maximal nonlocality power
of 1. For self-adjoint operators not in Cs we consider two typical self-adjoint operators
Pψ = |ψ〉〈ψ | with |ψ〉 = (1/

√
2)(|em〉 + |el〉) and Aml = |em〉〈el| + |el〉〈em|,m �= l. The

probabilistic outcomes of Pψ ⊗ I and Aml ⊗ I while applying to � are encoded as

(Pψ ⊗ I )� = 1
2

(
ρ1/2

m |emfm〉 + ρ
1/2
l |emfl〉 + ρ1/2

m |elfm〉 + ρ
1/2
l |elfl〉

)
, (57)

(Aml ⊗ I )� = ρ
1/2
l |emfl〉 + ρ1/2

m |elfm〉. (58)

Thus, the optimal approximate doubles of (Pψ ⊗ I )� and (Aml ⊗ I )� are

PJ(Pψ ⊗ I )� = 1

2

(
ρ1/2

m |emfm〉 +
2ρlρ

1/2
m

ρm + ρl

|elfm〉 +
2ρ

1/2
l ρm

ρl + ρm

|emfl〉 + ρ
1/2
l |elfl〉

)
, (59)

10
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PJ(Aml ⊗ I )� = 2ρlρ
1/2
m

ρl + ρm

|elfm〉 +
2ρ

1/2
l ρm

ρm + ρl

|emfl〉 (60)

and the optimal approximate doubles of Pψ and Aml are given by

P(Pψ ⊗ I ) = I ⊗ 1

2

(
|fm〉〈fm| +

2ρ
1/2
m ρ

1/2
l

ρm + ρl

|fm〉〈fl| +
2ρ

1/2
m ρ

1/2
l

ρm + ρl

|fl〉〈fm| + |fl〉〈fl|
)

(61)

P(Aml ⊗ I ) = I ⊗ 2ρ
1/2
m ρ

1/2
l

ρm + ρl

(|fm〉〈fl| + |fl〉〈fm|). (62)

We see that the optimal approximate double P(Pψ ⊗ I ) of a one-dimensional projection Pψ

cannot be represented as I ⊗ Pφ for some vector φ generally. On the other hand, the optimal
approximate double of Aml ⊗ I is its image under the mapping κ(X) = JX∗J with some
coefficient. Moreover, it holds that

‖(Pψ ⊗ I )�‖2 = 1

2
(ρm + ρl), (63)

‖PJ(Pψ ⊗ I )�‖2 = 1

4

(
ρm + ρl +

4ρmρl

ρm + ρl

)
, (64)

‖(Aml ⊗ I )�‖2 = (ρm + ρl), (65)

‖PJ(Aml ⊗ I )�‖2 = 4ρmρl

ρm + ρl

. (66)

Although ‖(Pψ ⊗I )�‖ < ‖(Aml ⊗I )�‖, we have ‖PJ(Pψ ⊗I )�‖ > ‖PJ(Aml ⊗I )�‖. The
nonlocality power pψ of Pψ is larger then the nonlocality power pml of Aml. More precisely,
we have

p(Pψ ⊗ I ) = 1

2

(
1 +

4ρmρl

(ρm + ρl)2

)
and p(Aml ⊗ I ) = 4ρmρl

(ρm + ρl)2
. (67)

In summary, by applying Pψ ⊗ I and Aml ⊗ I to � the probabilistic outcomes are encoded
by (Pψ ⊗ I )� and (Aml ⊗ I )� whose projections on K̃ are given by PJ(Pψ ⊗ I )� and
PJ(Aml ⊗ I )�, respectively. We say that (Pψ ⊗ I )� and (Aml ⊗ I )� are interpreted as
PJ(Pψ ⊗ I )� and PJ(Aml ⊗ I )� with probability p(Pψ ⊗ I ) and p(Aml ⊗ I ) and thus
properties of M′ corresponding to P(Pψ ⊗ I ) and P(Aml ⊗ I ) are obtained with probabilities
p(Pψ ⊗ I ) and p(Aml ⊗ I ). Moreover, from (67) it follows that Pψ ⊗ I gives more precise
properties of the system M′ than Aml ⊗ I and we may conclude that the superposition of |em〉
and |el〉 causes more nonlocal effect than Aml.

5. Bell correlation

Another measure of nonlocal effects can be given by Bell correlation which is linear with
respect to observables. Let A and B be two independent C∗-algebras and ω is a state on
A ⊗ B. We call (A1, A2, B

′
1, B

′
2) an admissible quadruple if Ai ∈ A and B ′

i ∈ B with
−1 � Ai, B

′
i � 1 for i = 1, 2. Bell correlation of an admissible quadruple (A1, A2, B

′
1, B

′
2)

with respect to ω is given [12] by

β(ω;A1, A2, B
′
1, B

′
2) = ω(A1B

′
1 + A1B

′
2 + A2B

′
1 − A2B

′
2). (68)

We say that Bell’s inequality is satisfied for an admissible quadruple (A1, A2, B
′
1, B

′
2) if

|β(ω;A1, A2, B
′
1, B

′
2)| � 2. (69)

11
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If Bell’s inequality is violated, then a local hidden variable model of the correlation is not
allowed [13].

Consider the case that A = M,B = M′ and ω is given by a cyclic and separating vector
� for M and M′. Bell’s correlation can be written in the form

β(ω;A1, A2, B
′
1, B

′
2) = 〈A1�,B ′

1�〉 + 〈A1�,B ′
2�〉 + 〈A2�,B ′

1�〉 − 〈A2�,B ′
2�〉. (70)

Let A′
1 and A′

2 be optimal approximate doubles of A1 and A2. Bell correlation (70) becomes

β(ω;A1, A2, B
′
1, B

′
2) = 〈A′

1�,B ′
1�〉r + 〈A′

1�,B ′
2�〉r + 〈A′

2�,B ′
1�〉r − 〈A′

2�,B ′
2�〉r .

(71)

It holds that

|β(ω;A1, A2, B
′
1, B

′
2)| � ‖A′

1� + A′
2�‖r ‖B ′

1�‖r + ‖A′
1� − A′

2�‖r ‖B ′
2�‖r , (72)

where ‖ · ‖r is the norm introduced by the real inner product 〈·, ·〉r = Re 〈·, ·〉. Thus,
β(ω;A1, A2, B

′
1, B

′
2) has the maximal absolute value β(ω;A1, A2) with

β(ω;A1, A2) = max
−1�B ′

1,B
′
2�1

|β(ω;A1, A2, B
′
1, B

′
2)| (73)

= α1‖A′
1� + A′

2�‖2
r + α2 ‖A′

1� − A′
2�‖2

r . (74)

β(ω;A1, A2, B
′
1, B

′
2) is maximal if and only if B ′

1 and B ′
2 is taken to be B ′

1 = α1(A
′
1 + A′

2)

and B ′
2 = α2(A

′
1 − A′

2) where α1, α2 are positive factors such that ‖B ′
1‖ = ‖B ′

2‖ = 1. We
may call β(ω;A1, A2) the maximal Bell correlation of A1 and A2 in the state ω.

Consider a pure state � in C
2 ⊗ C

2 of the form

|�〉 = ρ
1/2
0 |e0f0〉 + ρ

1/2
1 |e1f1〉 (75)

such that {|e0〉, |e1〉} and {|f0〉, |f1〉} are two orthonormal bases of C
2 and ρj > 0 with

ρ0 + ρ1 = 1. Let M = B(C2) ⊗ I and M′ = I ⊗ B(C2). Thus, (M,�) is a finite standard
von Neumann algebra.

As usual, Pauli matrices is denoted by σx, σy, σz. Assume {|e0〉, |e1〉} and {|f0〉, |f1〉} are
eigenvectors of σz in two local systems corresponding to eigenvalue 0 and 1. We see that
the three vectors (σa ⊗ I )�, a = x, y, z, are pairwise orthogonal in the real Hilbert space
(C2 ⊗ C

2)r and so are their optimal approximate doubles PJ(σa ⊗ I )�, a = x, y, z:

s̃x = PJ(σx ⊗ I )� = 2
√

ρ0ρ1
(
ρ

1/2
0 |e0f1〉 + ρ

1/2
1 |e1f0〉

)
, (76)

s̃y = PJ(σx ⊗ I )� = 2i
√

ρ0ρ1
(
ρ

1/2
0 |e0f1〉 − ρ

1/2
1 |e1f0〉

)
, (77)

s̃z = PJ(σx ⊗ I )� = ρ
1/2
0 |e0f0〉 − ρ

1/2
1 |e1f1〉. (78)

It follows that ‖s̃x‖ = ‖s̃y‖ = 2
√

ρ0ρ1 � 1 and equals 1 if and only if ρ0 = ρ1 = 1/2.
Moreover. the optimal approximate doubles of Pauli matrices are then given by

P(σx ⊗ I ) = I ⊗ 2
√

ρ0ρ1σx, (79)

P(σy ⊗ I ) = I ⊗ −2
√

ρ0ρ1σy, (80)

P(σz ⊗ I ) = I ⊗ σz. (81)

Therefore, we get the following maximal Bell correlations:

β(�; I, σz) = 2, (82)

12
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4(
√

2 − 1) � β(�; I, σa) = 2(1 + 4ρ0ρ1)

1 + 2
√

ρ0ρ1
< 2, a = x, y (83)

0 < β(�; σx, σy) = 4
√

2ρ0ρ1 � 2
√

2, (84)

2 < β(�; σz, σa) = 2(1 + 4ρ0ρ1)
1/2 � 2

√
2, a = x, y. (85)

β(ω; I, σz) corresponds to the case of classical communication. β(ω; σx,σy) is between 0 and
2
√

2 where 0 corresponds to the limiting cases of pure product states while 2
√

2 corresponds
to the maximally entangled states. β(ω; σx, σy) � β(ω; σz, σa), a = x, y and all the three are
equal when they have the maximal value 2

√
2 if and only if ρ0 = ρ1 = 1/2. Bell’s inequality

is satisfied for pairs (I, σx), (I, σy) and (I, σz) since they are commutative.
Furthermore, we define the maximal Bell correlation of two independent C∗-algebras A

and B in the state ω as

β(ω;A,B) = max
−1�A1,A2�1

β(ω;A1, A2). (86)

Thus, Bell’s inequality is violated in the state ω if β(ω;A,B) > 2. Let A1 has eigenvalues λi .
From the linearity of the Bell correlation β(A1, A2, B1, B2) with respect to λi it follows that
β(ω;A1, A2) reaches the maximal value only if the absolute values of all eigenvalues A1 are
one, ‖λi‖ = 1 for all i. Thus, to find β(ω,A,B) it is sufficient to consider A1 and A2 with
eigenvalues 1 or −1.

For the two-dimensional system C
2 self-adjoint operators with eigenvalues 1 or −1 are

I,−I and the traceless self-adjoint matrices H with norm one,

H = aσx + bσy + cσz, with a, b, c ∈ R, a2 + b2 + c2 = 1. (87)

From (79) to (81) the optimal approximate doubles of H ⊗ I and (H ⊗ I )� are given by

H ′ = P(H ⊗ I ) = I ⊗ (2
√

ρ0ρ1(aσx − bσy) + cσz),

H ′� = PJ(H ⊗ I )� = as̃x + bs̃y + cs̃z,
(88)

respectively. One observes that

‖H ′‖ = ‖H ′�‖. (89)

If the vectors H ′� are written as H ′� = xẽx + yẽy + zẽz with orthonormal vectors
ẽx = s̃x/‖s̃x‖, ẽy = s̃y/‖s̃y‖, and ẽz = s̃z in (C2 ⊗ C

2)r , then

x2

4ρ0ρ1
+

y2

4ρ0ρ1
+ z2 = 1. (90)

Let H1 and H2 be the matrices of the form (87) and H ′
1 and H ′

2 their optimal approximate
doubles. From (72) and (89) it follows that

β(�;H1,H2) � ‖(H ′
1 + H ′

2)�‖r + ‖(H ′
1 − H ′

2)�‖r (91)

�
√

2
(‖(H ′

1 + H ′
2)�‖2

r + ‖(H ′
1 − H ′

2)�‖2
r

)1/2
(92)

= 2
(‖H ′

1�‖2
r + ‖H ′

2�‖2
r

)1/2
. (93)

The second inequality (92) follows from Cauchy–Schwarz inequality. The equality in (92)
holds if and only if ‖(H ′

1 + H ′
2)�‖r = ‖(H ′

1 − H ′
2)�‖r , i.e. if and only if H ′

1� and H ′
2� are

orthogonal in (C2 ⊗ C
2)r . The equality (93) follows from the parallelogram law.

Since ‖H ′�‖ given by (88) is symmetric with respect to a and b, it is sufficient to
consider matrices of the form H = aσx + cσz, a, c ∈ R, a2 + c2 = 1. Consequently, finding
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β(�;M,M′) can be done by maximizing the sum of squares of the lengths of two orthogonal
vectors H ′

1� and H ′
2� on x2/(4ρ0ρ1) + z2 = 1. Explicit calculations show

max β(�;H1,H2) = 2(1 + 4ρ0ρ1)
1/2, (94)

which happens if H1 = σx and H2 = σz, for example. We come to the conclusion that

β(ω;M,M′) = 2(1 + 4ρ0ρ1)
1/2 (95)

which is always greater than 2. Thus, Bell’s inequality is violated and quantum correlations
in the state � cannot explained by local hidden variable models.

6. Concluding summary and discussions

The great idea of Einstein, Podolsky and Rosen is reconsidered in this work. The nonlocality
of a bipartite system A + B is tested by comparing the outcomes of local observables on both
subsystems. For a fixed observable A of one subsystem A we define an optimal approximate
double A′ of the other system B whose probabilistic outcomes are most similar to those of
the fixed observable A. Perfect correlation is an extreme case of such comparison. If for
any observable A there exists an observable A′ whose probabilistic outcomes are the same
as those of A, and vice versa, then the state is called perfectly correlated. Well-known
examples of perfect correlation are EPR states for continuous systems and Bohm states for
finite dimensional systems. In this case A′ is an optimal approximate double of A and it can be
said that by applying the observable A of the subsystem A the properties of the subsystem B
corresponding to the optimal approximate doubles A′ is revealed. This leads to the interesting
question: what if quantum states are not perfectly correlated?

Here we consider a special class of entangled states including pure states on finite systems,
temperature states and the vacuum state. The observable algebras of two subsystems are given
by a von Neumann algebra M and its commutant M′ on a The Hilbert space H and the
entangled state ω is the vector state associated with a unit vector � ∈ H which is cyclic and
separating for both M and M′. Our results provide detailed comparisons of probabilistic
outcomes of local measurements on the state � and the optimal approximate double A′ of an
observable A is determined uniquely. One essential point in our method is that the Hilbert
space is taken with a real inner product. It makes our estimation straightforward. The reason
is as follows. For A = A∗ ∈ M and B = B∗ ∈ M′ we see that AB ′ is still a self-adjoint
operator and hence 〈A�,B ′�〉 = 〈�,AB ′�〉 is real. Consequently, comparisons of vectors
A� and B ′� can be performed with a simple projection method. The optimal approximate
vector A′� to the fixed vector A� can be found by the projection on the closed real space
spanned by vectors B ′�,B ∈ M′. Then the optimal approximate double A′ of A can be
determined and we have 〈A�,B ′�〉 = Re〈A′�,B ′�〉. It is interesting to note that the inner
product of A� and B ′� is equal to the quantum correlation of A and B ′ which plays an
essential role in modern quantum information theory.

The physical meaning of optimal approximate doubles will be clearer when together with
the nonlocality power p(A) of A. We know that probabilistic outcomes of an observable
A ∈ M are said to be the properties of M. As demonstrated by EPR states and Bohm states,
if two subsystems M and M′ are perfectly correlated, then properties of M′ can be obtained
exactly by virtue of applying observables of M. For vector states � without perfect correlation
we define the nonlocality power p(A) of an local observable A ∈ M as the similarity that
A� looks like the properties A′� of the subsystem M′ corresponding to A′. More precisely,
when applying a local measurement A ∈ M to �, the probabilistic outcomes are encoded
as a vector A� whose projection on K̃ is given by A′� with K̃ = M′

s�. We say that the
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probabilistic outcome vector A� of A is interpreted as the probabilistic outcome vector A′�
of A′ with probability p(A). It means that the properties of the subsystem M′ can be acquired
by chance by applying the observables of M. Consequently, nonlocality of quantum states
can be described by the following question: how many properties of the subsystem M′ can
be obtained by observables of the subsystem M?

The value of p(A) is between 0 and 1, 0 � p(A) � 1. Clearly for states with perfect
correlation like EPR states or Bohm states we have p(A) = 1 for all A ∈ M. With a smaller
value of p(A) we get less accurate properties of the subsystem M′. Examples in section 4
show that nonlocality power can be enhanced by superposition.

One application of optimal approximate doubles is to find Bell’s correlation. Bell’s
inequality is such an important step in quantum theory that it makes nonlocality of quantum
states experimentally testable. The experimental data used in Bell’s inequality are just quantum
correlations. For any (A1, A2, B

′
1, B

′
2) of observables Bell’s correlation can be given by

(A′
1, A

′
2, B

′
1, B

′
2) where A′

1, A
′
2 are optimal approximate doubles of A1, A2. Then estimating

the maximum of Bell’s correlation can be performed easily. As an example, maximal Bell’s
correlation for a pure entangled state φ = a|00〉 +

√
1 − a2|11〉, 0 < a < 1 on a two-

dimensional systems is found explicitly and shown to be larger than 2 for 0 < a < 1.
Therefore, local hidden variable models are not suitable for any entangled pure state φ.

It is worth noting that optimal approximate doubles are defined for any quantum state. Let
A and B be two independent C∗-algebras and ω a quantum state on A ⊗ B. One can always
find a Hilbert space Hω with a mapping π : A ⊗ B → B(Hω) and a unit vector � ∈ Hω

such that � is cyclic for π(A ⊗ B) and ω(X) = 〈�,π(X)�〉 with X ∈ A ⊗ B [10]. Let
M and N be von Neumann algebras generated by π(A) and π(B). In Hω the geometrical
meaning of optimal approximate double A′ ∈ N of an observable A ∈ M still holds: A′�
is the optimal approximate vector to A� among {B ′� ; B ′ = B ′∗ ∈ N }. Generally we have
M� �= Hω �= N�. Thus, equation (5) does not hold in general. But the projection method
can be still applied. In particular, one may hope that some characterizations of separable states
can be given in terms of optimal approximation doubles.
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